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Intro

•金明剑 (Jin Mingjian)

• Manager of Data Department at Tigerjoys, now 

• Pioneer of Chinese Java High-Performance Engineering

• Landz (high performance Java 8 foundation) *, 2014

• 30% faster than Netty in TechemPower Benchmark in that time

• Data engineering, 2014 - now

• Flink Contributor, 2017

• Two trivial PRs merged (Flink-5692, Flink-4422)

• Why I participate

• Final battle (挂靴之战) 

*  
https://jinmingjian.xyz/ar
chives/landz/home.html



Principle

• Solve (or track) the bottleneck in Flink's foundation
• Contributed as highest engineering standard as possible

• Non goal: make the score ranking No.1
• violation: merge pipeline breakers into one node (skip blocking mode)

• e.g. pushdown join op into scan op

• violation: immediate cache and indexing (skip blocking mode)

• e.g. cache date_dim for no scanning

• scans beat btrees when selectivity > 1% (Kester et al., 2017)

• pure re-ordering in plan opt

• Calcite works primarily good

• "Join reordering is not enabled (by default)... Reordering joins without somewhat accurate es
timates is basically gambling" - Fabian Hueske (Co-Founder DataArtisans)



TPC-DS Benchmark

• Far away from true practices for real world bigdata
• Denormalization is common knowledge

• Criticisms**

• “Manual optimizer”

• Traverse plan spaces of TPCDS, then adjust "order“ of plan to best score

• “Amnesia cache” (mentioned above)

• “Cheater tweaks”

• generally-wrong special assumption

• e.g. sorted/unqiue/primary key(there is no sorted/unqiue/primary key idea in parquet)

• Shame to have this in our competition

** TeraData: Can We
Trust Hadoop Benc
hmarks?(https://www.
teradata.com/Blogs/Ca
n-We-Trust-Hadoop-

Benchmarks)



Query93

select  ss_customer_sk
,sum(act_sales) sumsales

from (select ss_item_sk
,ss_ticket_number
,ss_customer_sk
,case when sr_return_quantity is not null then (ss_quantity-sr_return_quantity)*ss_sales_price

else (ss_quantity*ss_sales_price) end act_sales
from store_sales left outer join store_returns on (sr_item_sk = ss_item_sk

and sr_ticket_number = ss_ticket_number)
,reason

where sr_reason_sk = r_reason_sk
and r_reason_desc = 'Package was damaged') t

group by ss_customer_sk
order by sumsales, ss_customer_sk

limit 100

No clever plan



Query28

Current 
Plan are 
Good



Optimization Points

• Basic Parameters Tweaks

• Compressed Transport

• Fastest Native IO

• Resilient Operator Memory Management

• More Fair Task Scheduling

• Other Random Fixs



Basic Parameters Tweaks

##------ 复赛默认配置，请勿修改，修改后算作无效成绩！-------##

jobmanager.heap.size: 8g

taskmanager.heap.size: 225g

taskmanager.numberOfTaskSlots: 225

##------ 复赛默认配置，请勿修改，修改后算作无效成绩！-------##

taskmanager.memory.off-heap: true

taskmanager.memory.preallocate: false

taskmanager.memory.fraction: 0.94

taskmanager.network.numberOfBuffers: 65536

env.java.opts.jobmanager: "-XX:+UseParallelGC"

env.java.opts.taskmanager: "-XX:+UseParallelGC"

parallelism.default: 104

table.optimizer.reuse-source-enabled: true (default true, enabled in source)

KEY: 
taskmanager.heap.size
!= the JVM heap size 
of taskmanager. 
It counts for off-heap 
memory usage.



Local Benchmark Configuration

• Xeon Platinum 8260 24c/48ht/1socket (performance mode + turbo boo
st disabled)

• DDR4-2400 2*32G as Cache + DCPMM 2*128G (DRAM:PM 1:4)

• Intel 900P SSD for stable 2.1GB/s read IO, and Samsung consumer-level 
SSD pm981a for write(2GB+/s in-cache, 800MB/s out-cache)

• TPC-DS SF500 data + officially provided benchmark tool

• Linux(kinds of kernel, version is not much important here)

• My own local setup ~=

0.45 * official online setup
• Only NUMA can not 

be reproduced



DCPMM

• Intel Optane DC Persistent Memory Module
• Memory mode (PMM Memory Mode-ware programming)

• Observation
• local dithering is around 50sec (total ~1500sec)

• online dithering is around 100sec (total ~1500sec)

• Why larger dithering than that of local
• double larger size of working dataset

• soft effect of automatic NUMA balancing(RHEL/Centos)

• Why so large dithering?



DCPMM

• Problem of PMM Memory Mode

• DRAM memory is used as directly-mapped cache for PMMs* 

• Buffering and combining at 256B does not work for multithreads

• PMM Memory Mode-ware Programming

• Working dataset size SHOULD be smaller than the size of dram cache

• Do NOT do random access < 256B

• Conclusion

• Large dithering mainly stems from DCPMM

• DCPMM is surprisingly a nice replacement of  the DRAM for underutilized 
software even in memory mode

* Intel® 64 and IA-
32 Architectures Optimization
Reference Manual



Compressed Transport

• Observation
• IO-intensive in blocking mode

• Disk-IO max write bandwidth: 1GB/s ...

• Compression is natural optimization for (slow) disk-IO



Compressed Transport

• BoundedBlockingSubpartitionType
• FILE_MMAP, FILE, MMAP, AUTO(default)

• Only two actually used: FILE_MMAP(64bit), FILE(other)

• FILE_MMAP
• file write, mmap read

• No zero-copy if general compression algorithm enabled
• FILE

• How about unused MMAP type(mmap read, mmap write)?

• Answer this question later



Compressed Transport

• Which compression algorithm?
• CPU power is VERY VERY redundant, so compression ratio is preferred

• Measurement 
• Local standalone test, for sampling 32KB-128KB chunks

• zstd compression ratio: 1/4 to 1/6

• lz4 compression ratio: ~ 1/3

• zstd compression bandwidth: 1.2GB+/s per core



Compressed Transport

• Measurement (cont.)
• Online benchmark

• Decrease totally average ~25% online run time

• The overhead of blocking disk IO has been significantly mitigated 



Compressed Transport

• How about unused MMAP type?
• generally, mmap is sweet in fact

• Yes, mmap write still need to dump to disk

• It is async before hitting threshold (“lazy” called in API docs) 

• /proc/sys/vm/dirty_ratio = 30 (default of RH/CENTOS)

• Zstd gives awesome compression: 78GB->18GB for Query93 ss

• Default implementation for MMAP has big problem(so I guess this is 
the reason it is abandoned), but can be fixed

• Local standalone measurement: 2x faster than blocking file IO

• But two reasons here



Fastest Native IO

• Observation
• ParquetTableScan operator takes RIDICULOUS runtime for most cases 

even after compressed transport improvement

• Disk-IO is definitely NOT the culprit

• Measurement
• Local, typical, before op improvement



Fastest Native IO

• Native IO for Parquet scan

• arrow_parquet_xx project
• Column based low level C++ API on top of  Apache Arrow Parquet 

• NativeParquetReader
• Row based Flink-compatible high level Java Reader/API

• Self-balancing splitting/partitioning for better scan subtask scheduling 

• Speedup
• C++ side APIs 10x than Prestosql's *

• Java side APIs 5x than Prestosql's *

• Java side APIs 2x than Flink's (ParquetVectorizedColumnRowReader) **

* https://github.com/jinmingjian/presto-parquet ** test and benchmark codes have been provided



Fastest Native IO

• Native IO to push scan op into its limitation 
• Flink/Blink claims 2x-3x faster than open-source Spark (Flink forward, 2018)

• DBR(DataBricks Runtime) as commercially enhanced version of Spark 3x-

8x faster than open-source Spark **

• DBR just have a native IO layer(written in C++)**

• Fastest Parquet Reader in Java world (in highest standard)

• Passed local TPC-DS SF500 dedicated testcases and online SF1000 check

• I am confident current impl can beat close-sourced DBR’s

• Bundles of  extensions can be unlocked in future

• No shame to have C++ written components for performance

* https://databricks.com/glossary/
what-is-databricks-runtime
** DBR recently rebranded to "Delta
Platform" but still not open 
sourced as my understanding



Fastest Native IO

• Measurement
• Local, standalone test

• SF500 store_sales table, columns reading same to Query93

• Scan 1.4B records -> 48GB mmap writting with mmap-problem fixed (note: 78GB 

subpartition out for Flink’s serialization schema)

• 8 workers(threads)

• 5 seconds for scan only (no dumping)

• 16 seconds for fixed mmap writing(why faster)

• 26 seconds for mmap preallocated

• VS ~50 seconds, Query93 store_sales scan time (only compressed 18GB 

subpartitions disk dump)  (note: both use same hardware setup)



Fastest Native IO

• Measurement (cont.)
• Local, the shortest run time measure in five runs



Fastest Native IO

• Measurement (cont.)

• online evaluation (included dithering)

• estimated ~5% average improvement for online benchmark



Fastest Native IO

• Analysis



Fastest Native IO

• Analysis



Fastest Native IO

• Analysis



Fastest Native IO

• Analysis

Generated 
BatchCalc Op



Fastest Native IO

• Measurement
• Tracing Query93 reader next-to-next latency (HdrHistogram*)

Let us do a simple math:
3177e-9*15.14e6 = 48s !!!
(total time elapse 52s in this
run, subpartition dumping is
async and overlapped)

* https://github.com/HdrHistogram/HdrHistogram

<- Histogram dump from 
one partition reader (Unit: 
nanoseconds)



Resilient Operator Memory Management

• Observation
• Many disk-IO and spilling logging for long run hash join op

• System memory still has

• Tweaking option “table.exec.resource.hash-join.memory”

• Small: all happy except spilling for big hash join and unused system memory

• Middle: short-run joins start uprising, but still spilling for big hash join

• Large: single runs of  big hash joins seem great improved (in that all in memory), but all 

20-case benchmark can not be completed for out-of-memory

• Analysis
• Suspected memory leak: mem usage just increase and not decrease

• Too many locations to take and “free”

• Naïve allocation algorithm: preallocated when hashjoin op opened



Resilient Operator Memory Management

• Native Memory Manager
• A new kind off-heap memory manager introduced

• API Design (for hashjoin)
• Strict memory ownership boundary (mechanism guarantees no memory 

leaking)
• Clean and converge all-around take/free points into one take method and two free 

variants in BaseHybridHashTable

• Only root table op is responsible for allocate/free

• Children data structure ask table for “take” mem segments and do not care “free”

• Except when eagerly free wanted, e.g. rehash, they can ask table for immediate “free”

• Resilient memory usage
• Request from 0 to unallocable , and return to system from unallocable to 0



Resilient Operator Memory Management

• Native Memory Manager (cont.)
• JEMalloc based

• 4x faster than UNSAFE.allocateMemory/freeMemory (for 32KB chunk, tested)
• Same behind java.nio.ByteBuffer#allocateDirect

• and behind MemorySegmentFactory#allocateUnpooledOffHeapMemory…

• Strict “Contract” guarantees memory-leak-free coding
• All memory segments that Children “take”/“free”-ed must be allocated by ROOT

• ROOT will and only “free” all its allocated memory segments

• VS that direct ByteBuffer only released when Full GC

• Eagerly return memory to system
• VS that glibc’s malloc (behind direct ByteBuffer) has problem to return its memory to system

• Advanced APIs can help to boost the performance of  general memory usages



Resilient Operator Memory Management

• Measurement
• Online benchmark



Resilient Operator Memory Management

• Measurement (cont.)
• local



Resilient Operator Memory Management

• Measurement (cont.)
• local



Resilient Operator Memory Management

• This is best engineering practice for large chunk (1KB/4KB/32KB+) 
• Strict allocate/free contract and no memory leak

• Variant sizes supported

• Return to system

• No GC pressure

• Negligible JNI overhead

• Small chunk allocation(free)
• (my) Landz’s pure on-heap ZMalloc beats natively JEMalloc

• Proposed as an universal memory manager
• Can be trivially extended to all operators

• Orthogonal and extensible to kinds of  high-level cleaner schema

• Secrete weapon more powerful than “Project Tungsten”



More Fair Task Scheduling

• Status
• Current scheduling algorithm is not fair enough between Task Managers

• Random like

• Especially for NUMA and benchmark

• TM usually pinned to some node(socket)

• If  not pinned, OS scheduling between nodes could be a little more expensive(so NUMA-ware)

• True parallelism of  this high task parallelism scenario is limited by hardware in fact

• Observation
• Let Flink/OS do scheduling freely, there is 10%-15% unbalanced slot assignment

and very large dithering.



More Fair Task Scheduling

• Improvement
• Pin two Task Managers to different nodes

• Round-robin between all Task Managers

• Simple but efficient



Random Stuff

• NUMA-ware start script Fix
• Option “taskmanager.compute.numa” 

• Bind Task Managers to different NUMA Nodes

• But it does NOT work when missing numactl tool

• Fix start-cluster.sh to use taskset to do numa binding

• High performance Java Util library
• Stripped from Landz project

• Include many pearls

• Unsafe tools(address <-> Buffer <-> NIO Direct Buffer)

• Unsafe thread local data structures (faster than java.lang.ThreadLocal#ThreadLocal and Flink’s its 

usages)

• Faster common expensive object constructors …



Next

• At hand
• Merge intra-pipeline predicate operator into reader

• BatchCalc op is very expensive as we seen

• Further 2x speedup expected

• Further optimization for Native reader

• skip_to_row

• BuildWriteBuffer is expensive

• possible 0-copy even with compression

• Next's Next
• Redesign whole ser/deser/late-materialization schema

• Unlimited gameplay on the top of my contribution: Apache Arrow based



Summary

• All optimizations are fundamental and benefit all cases
• PMM Memory Mode-ware Programming, carefully design opts to match the 

hardware

• approaches current architecture limit when queries can not be further more “clever” 
planned

• All optimizations are firstly originally created in the competition and 
in the whole Java big data ecosystem

• All optimizations are trusted as best of world and almost in highest 
engineering standard

• Suggestions are provided for further performance breakthrough based 
on scientific measurements



Thanks


