A ache Flink t% & #t &% %

\ |
{ @ v
B - - . e
/] o)
o | \. . // 7
/ »— T
/ |

@ Apache Flink (- Alibaba Cloud (intel)‘

Intro

A ° [(X +
* % HH -‘—‘LIJ (] 1mn Mlng] lan) httos./7jinmingyian.xyz/ar
. . chives/landz/home.htm/

* Manager of Data Department at Tigerjoys, now

* Pioneer of Chinese Java High-Performance Engineering

 Landz (high performance Java 8 foundation) *, 2014
* 30% faster than Netty in TechemPower Benchmark in that time

* Data engineering, 2014 - nOW

* Flink Contributor, 2017
* Two trivial PRs merged (Flink-5692, Flink-4422)
* Why I participate
* Final battle (3=#} =~ kX))

Apache Flink & & #k &8 T¥——

Principle

 Solve (or track) the bottleneck in Flink's foundation
* Contributed as highest engineering standard as possible

* Non goal: make the score ranking No.1

* violation: merge pipeline breakers into one node (skip blocking mode)
* e.g. pushdown join op into scan op

* violation: immediate cache and indexing (skip blocking mode)
* e.g. cache date_dim for no scanning
* scans beat btrees when selectivity > 1% (Kester et al., 2017)

* pure re-ordering in plan opt
* Calcite works primarily good

* "Join reordering is not enabled (by default)... Reordering joins without somewhat accurate es
timates is basically gambling” - Fabian Hueske (Co-Founder DataArtisans)

Apache Flink & & #k &8 T¥——

TPC-DS Benchmark

** TeraData: Can We
Trust Hadoop Benc

hmarks?(https://www.
teradata.com/Blogs/Ca
n-We-Trust-Hadoop-

Benchmarks)

* Far away from true practices for real world bigdata

* Denormalization is common knowledge

* Criticisms**
* “Manual optimizer”
* Traverse plan spaces of TPCDS, then adjust "order” of plan to best score
* “Amnesia cache” (mentioned above)
* “Cheater tweaks”
* generally-wrong special assumption

* e.g. sorted/unqiue/primary key(there is no sorted/unqiue/primary key idea in parquet)

* Shame to have this in our competition

Apache Flink & & #k &8 T¥——

Query93

select ss_customer_sk
,sum(act_sales) sumsales
from (select ss_item_sk
,ss_ticket number
,8s_customer_sk
,case when sr_return_quantity is not null then (ss_quantity-sr_return_quantity)*ss_sales_price
else (ss_quantity*ss_sales_price) end act_sales
from store_sales left outer join store_returns on (sr_item_sk = ss_item_sk
and sr_ticket_number = ss_ticket_number)

No clever plan

,reason
where sr_reason_sk =r reason_sk
and r_reason_desc = 'Package was damaged') t
group by ss_customer_sk
order by sumsales, ss_customer_sk
limit 100

Apache Flink & & #k &8 T¥——

Query28

Name

ParguetTableSource(ss_solc

GlobalHashAggregate(groupBy:(ss_

Records Sent

2019-11-07 19:18:08

2019-11-07 19:19:49

R

Current
Plan are

Good

Duration

Optimization Points

 Basic Parameters Tweaks

* Compressed Transport

* Fastest Native 10

* Resilient Operator Memory Management
* More Fair Task Scheduling

* Other Random Fixs

Apache Flink & & #k &8 T¥——

Basic Parameters Tweaks

#-—-- BHRIARE, BPEN, EHEREELRMSE | - it
jobmanager.heap.size: 8g

taskmanager.heap.size: 225¢

taskmanager.numberOfTaskSlots: 225 KEY:

#-———- BRNANLE, BDEN, BREEELIHS | - #it taskmanagenheaposize
I= the JVM heap size

taskmanager.memory.oftf-heap: true J P

sk , of taskmanager.

askmanager.memory.preallocate: false

taskmanager.memory.fraction: 0.94 It counts for Off'heap

taskmanager.network.numberOtBufters: 65536 memory usage.

env.java.opts.jobmanager: "-XX:+UseParallelGC"
env.java.opts.taskmanager: "-XX:+UseParallelGC"
parallelism.detault: 104

table.optimizer.reuse-source-enabled: true (default true, enabled in source)

Apache Flink & & #k &8 T¥——

Local Benchmark Configuration

« Xeon Platinum 8260 24c¢/48ht/1socket (performance mode + turbo boo

st disabled)
* DDR4-2400 2*32G as Cache + DCPMM 2*128G (DRAM:PM 1:4)

* Intel gooP SSD for stable 2.1GB/s read 10, and Samsung consumer-level
SSD pmo8ia for write(2GB+/s in-cache, 80oMB/s out-cache)

» TPC-DS SF500 data + officially provided benchmark tool
* Linux(kinds of kernel, version is not much important here)
* My own local setup ~=

0.45 * oftficial online setup

» sudo ipmctl show —-topology

DimmID | MemoryType | Capacity | PhysicalID| Devicelocator

¢ Only NUMA can not
)I 0x0001 | Logical Non-Volatile Device | 126.375 GiB 0x0011 CPU1_DIMM_A2
be reproduced 0x0101 | Logical Non-Volatile Device | 126.375 GiB | ©x0015 CPU1_DIMM_D2

N/A | DDRu | 32.000 GiB Oxe010 CPU1_DIMM_A1
DDR4Y | 32.000 GiB Ox0014 CPU1_DIMM_D1

Apache Flink & & #b &% TF—

DCPMM

* Intel Optane DC Persistent Memory Module
* Memory mode (PMM Memory Mode-ware programming)

* Observation
* local dithering is around 50sec (total ~1500sec)

* online dithering 1s around 100sec (total ~1500sec)

* Why larger dithering than that of local
* double larger size of working dataset
* soft effect of automatic NUMA balancing(RHEL/Centos)

* Why so large dithering?

Apache Flink & & #k &8 T¥——

DCPMM

* Intel® 64 and 1A-
32 Architectures Optimization
Reference Manual

* Problem of PMM Memory Mode
* DRAM memory is used as directly-mapped cache for PMMs*

* Buffering and combining at 256B does not work for multithreads

 PMM Memory Mode-ware Programming
* Working dataset size SHOULD be smaller than the size of dram cache
* Do NOT do random access < 256B

* Conclusion
* Large dithering mainly stems from DCPMM

* DCPMM is surprisingly a nice replacement of the DRAM for underutilized
software even in memory mode

Apache Flink & & #k &8 T¥——

Compressed Transport

e Observation

* [O-intensive in blocking mode
e Disk-10 max write bandwidth: 1GB/s ...

« Compression is natural optimization for (slow) disk-10

Query largest size of scan op generated data
Query/0 105GB
Query93 76.4GEB
Query93 54.8GB

Apache Flink #% & # i F—

Compressed Transport

* BoundedBlockingSubpartitionType
* FILE_MMAP, FILE, MMAP, AUTO(default)
* Only two actually used: FILE_MMAP(64bit), FILE(other)

* FILE_MMAP

* file write, mmap read

* No zero-copy if general compression algorithm enabled
 FILE
* How about unused MMAP type(mmap read, mmap write)?

* Answer this question later

Apache Flink & & #k &8 T¥——

Compressed Transport

* Which compression algorithm?
* CPU power is VERY VERY redundant, so compression ratio 1is preferred

* Measurement
* Local standalone test, for sampling 32KB-128KB chunks
* zstd compression ratio: 1/4 to 1/6
* 124 compression ratio: ~ 1/3

* zstd compression bandwidth: 1.2GB+/s per core

Apache Flink & & #k &8 T¥——

Compressed Transport

* Measurement (cont.)
e Online benchmark
* Decrease totally average ~25% online run time

* The overhead of blocking disk IO has been significantly mitigated

Query largest size of scan op generated data online benchmark time change
Query/70 105GE 221s-= 121s
Query93 76.4GB 3265 - 275s
Query98 54.8GB 2585 - 1425

Apache Flink #% & # i F—

Compressed Transport

* How about unused MMAP type?

* generally, mmap 1s sweet 1n fact
* Yes, mmap write still need to dump to disk
* [t 1s async before hitting threshold (“lazy” called in API docs)
* /proc/sys/vm/dirty_ratio = 30 (detault of RH/CENTOS)
* Zstd gives awesome compression: 78GB->18GB for Query93 ss

* Detault implementation for MMAP has big problem(so I guess this is
the reason it 1s abandoned), but can be fixed

* Local standalone measurement: 2x faster than blocking file IO
e But two reasons here

Apache Flink & & #k &8 T¥——

Fastest Native 10

e Observation

* ParquetTableScan operator takes RIDICULOUS runtime for most cases
even after compressed transport improvement

* Disk-1O is definitely NOT the culprit

e Measurement

* Local, typical, before op improvement

Query run time of scan phase (seconds) run time of whole query (seconds)

Queryl 9 30
Query28 121 140
Query93 51 258

Apache Flink #% & # i F—

Fastest Native 10

* Native 10 for Parquet scan
* arrow_parquet_XX project
* Column based low level C++ API on top of Apache Arrow Parquet
* NativeParquetReader
* Row based Flink-compatible high level Java Reader/API
* Self-balancing splitting/partitioning for better scan subtask scheduling
* Speedup
* C++ side APIs 10x than Prestosql's *

* Java side APIs 5x than Prestosql's *
 Java side APIs 2x than Flink's (ParquetVectorizedColumnRowReader) **

* https://github.com/jinmingjian/presto-parquet ** test and benchmark codes have been provided

Apache Flink & & #k &8 T¥——

Fastest Native 10

* Native 1O to push scan op into its limitation

* https://databricks.com/glossary/
what-is-databricks-runtime

** DBR recently rebranded to "Delta
Platform” but still not open
sourced as my understanding

* Flink/Blink claims 2x-3x faster than open-source Spark (Flink forward, 2018)

* DBR(DataBricks Runtime) as commercially enhanced version of Spark 3x-

8x faster than open-source Spark **
* DBR just have a native IO layer(written in C++)**

* Fastest Parquet Reader in Java world (in highest standard)
* Passed local TPC-DS SF500 dedicated testcases and online SF 1000 check

* I am confident current impl can beat close-sourced DBR’s

* Bundles of extensions can be unlocked in future

* No shame to have C++ written components for performance

Apache Flink & & #k &8 T¥——

Fastest Native 10

* Measurement
* Local, standalone test
* SIF500 store_sales table, columns reading same to Query93

* Scan 1.4B records -> 48GB mmap writting with mmap-problem fixed (note: 78 GB
subpartition out for Flink’s serialization schema)

* 8 workers(threads)

* 5 seconds for scan only (no dumping)

* 16 seconds for fixed mmap writing(why faster)
* 26 seconds for mmap preallocated

* VS ~50 seconds, Query93 store_sales scan time (only compressed 18GB
subpartitions disk dump) (note: both use same hardware setup)

Apache Flink & & #k &8 T¥——

Fastest Native 10

* Measurement (cont.)
* Local, the shortest run time measure 1n five runs

Query run time of scan phase before (seconds) run time of scan phase after (seconds)

Queryl 9 7

Query2 20 15
Query28 118 101
Query30 3 3

Query44 21 158
Query 70 b 53
Query93 50 42
QuerySa 35 29

Apache Flink #% & # i F—

Fastest Native 10

* Measurement (cont.)

* online evaluation (included dithering)

* estimated ~5% average improvement for online benchmark

Apache Flink & & #k &8 T¥——

Fastest Native 10

write:166, DataOutputSerializer (org.apache.flink.core.memory)

* Analysis

Apache Flink #% & #t &% T —

Fastest Native 10

* Analysis

try {
0T nextElement = serializer.createInstance(); nextEl
while (!format.reachedEnd()) {
synchronized (checkpointLock) { checkpointLock:
nextElement = format.nextRecord(nextElement);
if (nextElement != null) {
readerContext.collect(nextElement); reac
} else {
break;
h
h

¥
completedSplitsCounter.inc();

} finally {

Apache Flink #% & # i F—

Fastest Native 10

* Analysis
public void serializeRecord(T record) throws IOException {
if (CHECKED) {
if (dataBuffer.hasRemaining()) { dataBuffer: "jav:
throw new IllegalStateException("Pending seria
h
}

serializationBuffer.clear();
lengthBuffer.clear(); lengthBuffer: "java.nio.HeapByte

// write data and length
record.write(serializationBuffer); record: Serializat

int len = serializationBuffer.length();
lengthBuffer.putInt(index: @, len);

dataBuffer = serializationBuffer.wrapAsByteBuffer():

Apache Flink #% & # i F—

Fastest Native 10

public void processElement(org.apache.flink.streaming.runtime.streamrecord.StreamRecord element) throws Exception {
org.apache.flink.table.dataformat.BaseRow inl = (org.apache.flink.table.dataformat.BaseRow) element.getValue();

L]
) AnaIYSIS org.apache.flink.table.dataformat.BinaryString field$81;

boolean isNull$8il;
boolean isNull$85;
boolean result$86;
— -—T T T T == -
- =~
iﬁu11’$81 = inl.isNullAt(1); S~ ~
field$81 = org.apache.flink.table.dataformat.BinaryString.EMPTY UTFS; ~
/ if (1isNull$s1) { N\
field$81 = inl.getString(1l); \
[) Generated

\ org.apache.flink.table.dataformat.BinaryString field$82 = field$81;

if (1isNull$e1) { / BatchCalc Op
N ~ field$82 = (org.apache.flink.table.dataformat.BinaryString) (typeSerializer$83.copy(field$82)); V4
~ - ~ ”
-
~ - -
—_y — — — — -
- . _— e e s o - —

isNull$85 = isNull$81 || false;
result$86 = false;
if (1isNull$gs) {

result$86 = field$82.equals(((org.apache.flink.table.dataformat.BinaryString) str$s4));

—

Apache Flink #% & # i F—

Fastest Native 10

e Measurement * https://github.com/HdrHistogram/HdrHistogram

* Tracing Query93 reader next-to-next latency (HdrHistogram*)

<- Histogram dump from

Value Percentile TotalCount 1/(1-Percentile)
one partition reader (Unit:

377.800 B8.908000000060 1 1.08 nanoseconds)

£95.0888 ©.10000008600080 1539884 1.11

738.000 ©.200000000000 3048272 1.25
. Let us do a simple math:
256778047.808 ©.999900028474 15143624 139810813.34
3485250855.8688 ©.999999948395 15143625 16777216.00 3177€-9 15‘1466 =48s !l
340525055.600_1,0pAAARARG060 15143625 (total time elapse 52s in this
#[Mean e« 3177 558, Stdﬂfwmtm& ——— 243804.199] i ; ;
#[Max ?4@5?5@‘5?55 T-::-tﬁ,L r:ﬂur?t = I::-I-’-'?—Bﬁ.?f - run, Spr artition dump lng IS
#[Buckets - 21, subBuckets~ — = — — — "2638] async and overlapped)

Apache Flink #% & # i F—

Resilient Operator Memory Management

* Observation
* Many disk-IO and spilling logging for long run hash join op
* System memory still has
* Tweaking option “table.exec.resource.hash-join.memory”
* Small: all happy except spilling for big hash join and unused system memory
* Middle: short-run joins start uprising, but still spilling for big hash join

* Large: single runs of big hash joins seem great improved (in that all in memory), but all
20-case benchmark can not be completed for out-of-memory

* Analysis
* Suspected memory leak: mem usage just increase and not decrease
* Too many locations to take and “free”

* Naive allocation algorithm: preallocated when hashjoin op opened

Apache Flink & & #k &8 T¥——

Resilient Operator Memory Management

* Native Memory Manager
* A new kind off-heap memory manager introduced

 API Design (for hashjoin)

* Strict memory ownership boundary (mechanism guarantees no memory

leaking)

* Clean and converge all-around take/free points into one take method and two free
variants in BaseHybridHashTable

* Only root table op is responsible for allocate/free

* Children data structure ask table for “take” mem segments and do not care “free”

* Except when eagerly free wanted, e.g. rehash, they can ask table for immediate “free”
* Resilient memory usage

* Request from O to unallocable , and return to system from unallocable to 0

Apache Flink & & #k &8 T¥——

Resilient Operator Memory Management

* Native Memory Manager (cont.)
* JEMalloc based

* 4x faster than UNSAFE.allocateMemory/freeMemory (for 32KB chunk, tested)
* Same behind java.nio.ByteBufter#allocateDirect
* and behind MemorySegmentFactory#allocateUnpooledOftHeapMemory...

* Strict “Contract” guarantees memory-leak-free coding

* All memory segments that Children “take”/“tree”-ed must be allocated by ROOT

* ROOT will and only “free” all its allocated memory segments
* VS that direct ByteBufter only released when Full GC

* Eagerly return memory to system
* VS that glibc’s malloc (behind direct ByteBufter) has problem to return its memory to system

* Advanced APIs can help to boost the performance of general memory usages

Apache Flink & & #k &8 T¥——

Resilient Operator Memory Management

e Measurement

e Online benchmark

Query run time of query before (seconds) run time of query after (seconds)

query2> 47 244
queryZb 49 39
query38 106 106
querydl 4 4

query93 275 180
query98 142 154

Apache Flink #% & # i F—

Resilient Operator Memory Management

* Measurement (cont.)

e Jocal

Apache Flink & & #b &% TF—

Resilient Operator Memory Management

* Measurement (cont.)

e Jocal

Apache Flink & & #b &% TF—

Resilient Operator Memory Management

* This is best engineering practice for large chunk (1KB/4KB/32KB+)
* Strict allocate/free contract and no memory leak
* Variant sizes supported
* Return to system

* No GC pressure
* Negligible JNI overhead

e Small chunk allocation(free)
* (my) Landz’s pure on-heap ZMalloc beats natively JEMalloc

* Proposed as an universal memory manager
* Can be trivially extended to all operators
* Orthogonal and extensible to kinds of high-level cleaner schema

* Secrete weapon more powertful than “Project Tungsten”

Apache Flink & & #k &8 T¥——

More Fair Task Scheduling

e Status
* Current scheduling algorithm is not fair enough between Task Managers
e Random like

* Especially for NUMA and benchmark
* TM usually pinned to some node(socket)

* If not pinned, OS scheduling between nodes could be a little more expensive(so NUMA-ware)

* True parallelism of this high task parallelism scenario 1s limited by hardware in fact

« Observation

* Let Flink/OS do scheduling freely, there is 10%-15% unbalanced slot assignment
and very large dithering.

Apache Flink & & #k &8 T¥——

More Fair Task Scheduling

* Improvement
* Pin two Task Managers to different nodes
* Round-robin between all Task Managers

* Simple but efficient

Apache Flink & & #k &8 T¥——

Random Stuff

* NUMA-ware start script Fix
* Option “taskmanager.compute.numa”
* Bind Task Managers to different NUMA Nodes

* But it does NOT work when missing numactl tool

* Iix start-cluster.sh to use taskset to do numa binding

* High performance Java Util library
* Stripped from Landz project

* Include many pearls
* Unsafe tools(address <-> Bufter <-> NIO Direct Butfer)

* Unsafe thread local data structures (faster than java.lang. ThreadLocal#ThreadLocal and Flink’s its
usages)

* TFaster common expensive object constructors ...

Apache Flink & & #k &8 T¥——

Next

At hand

* Merge intra-pipeline predicate operator into reader
* BatchCalc op is very expensive as we seen
* FFurther 2x speedup expected

* FFurther optimization for Native reader
* skip_to_row
* BuilldWriteBufter is expensive

* possible O-copy even with compression

* Next's Next

* Redesign whole ser/deser/late-materialization schema

* Unlimited gameplay on the top of my contribution: Apache Arrow based

Apache Flink & & #k &8 T¥——

Summary

* All optimizations are fundamental and benefit all cases

* PMM Memory Mode-ware Programming, carefully design opts to match the
hardware

* approaches current architecture limit when queries can not be further more “clever”
planned

* All optimizations are firstly originally created in the competition and
in the whole Java big data ecosystem

* All optimizations are trusted as best of world and almost in highest
engineering standard

* Suggestions are provided for further performance breakthrough based
on scientific measurements

Apache Flink & & #b &% TF—

Thanks

Apache Flink #% & # i F—

